基本模型

Applications - Keras Documentation

  • [2015] VGGNet(16/19) [2]

  • [2015] GoogleNet [10]

  • [2016] Inception-v1/v2/v3 [4]

  • [2016] ResNet [3]

  • [2017] Xception [1]

  • [2017] InceptionResNet-(v1/v2)、Inception-v4 [5]

  • [2017] MobileNet [6]

  • [2017] DenseNet [7]

  • [2017] NASNet [8]

  • [2018] MobileNetV2 [9]

Index

Inception-v1/v2/v3

相关阅读

Reference

  • [1] [Xception: Deep Learning with Depthwise Separable Convolutions, CVPR 2017.](./Papers/基本模型/[2017].Xception.(CVPR).pdf)

  • [2] Very Deep Convolutional Networks for Large-Scale Image Recognition, ICLR 2015.

  • [3] Deep Residual Learning for Image Recognition, CVPR 2016.

  • [4] Rethinking the Inception Architecture for Computer Vision, CVPR 2016.

  • [5] Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning, AAAI 2017.

  • [6] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, arXiv 2017.

  • [7] Densely Connected Convolutional Networks, CVPR 2017.

  • [8] Learning Transferable Architectures for Scalable Image Recognition, arXiv 2017.

  • [9] MobileNetV2: Inverted Residuals and Linear Bottlenecks, CVPR 2018.

最后更新于